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Abstract
For our Applied Cryptography final project, we have implemented
an extension of the Vote project in which each voter can vote for
multiple candidates. We enforced the condition that each voter
votes for exactly 𝑘 out of 𝑛 total candidates, where 𝑘 and 𝑛 are
global constants (e.g. 𝑘 = 2, 𝑛 = 6). In order to do this, we modified
the project infrastructure to accommodate each voter voting for
multiple candidates and each candidate’s votes being totaled sepa-
rately. We also included a zero-knowledge proof (ZKP) to ensure
that each voter voted for exactly 𝑘 candidates.

1 DCP Background
1.1 Homomorphic Encryption

Definition 1.1 (Homomorphic Encryption). Homomorphic encryp-
tion is a form of encryption such that for and operation ⊕ on
plaintexts, there exists an operation ⊗ on ciphertexts such that:

Enc(𝑚1) ⊗ Enc(𝑚2) = Enc(𝑚1 ⊕𝑚2)
[5]

This is a handy trick that allows a agent to perform operations
on our data as ciphertexts without being able to directly read it.
And, we can see how this is useful in the context of voting since
we preforming a tally of votes while keeping the votes private.

Example 1.2 (ElGamal Homomorphic Encryption). The encryp-
tion of a message𝑚 is given by:

Enc(𝑚) = (𝑔𝑟 , 𝑝𝑘𝑟 · 𝑔𝑚)
where 𝑔 is a generator, 𝑟 is a random number, 𝑝𝑘 = 𝑔𝑠𝑘 is the public
key, and 𝑠𝑘 is the secret key. The ciphertext can be added or multi-
plied to yield the same result as adding or multiplying the plaintexts.
For example, if we have two ciphertexts 𝑐1 = (𝑔𝑟1 , 𝑝𝑘𝑟1 · 𝑔𝑚1 ) and
𝑐2 = (𝑔𝑟2 , 𝑝𝑘𝑟2 · 𝑔𝑚2 ), we can define the addition of ciphertexts as:

𝑐1 + 𝑐2 = (𝑔𝑟1 · 𝑔𝑟2 , 𝑝𝑘𝑟1 · 𝑔𝑚1 · 𝑝𝑘𝑟2 · 𝑔𝑚2 )
= (𝑔𝑟1+𝑟2 , 𝑝𝑘𝑟1+𝑟2 · 𝑔𝑚1+𝑚2 )
= Enc(𝑚1 +𝑚2)

where the addition of the ciphertexts is component-wise multipli-
cation. [3]

1.2 Threshold Encryption
In addition to homomorphic encryption, we also want to be able
to split the decryption key among multiple parties. Not only will
this prevent a single party from calling the election whenever they
want, but it also allows for a more secure system since one party
cannot decrypt the votes by itself. One attack on the system is that
a malicious party could "call the election" throughout the election

process and decrypt the votes examining the votes and potentially
tracking the votes back to the voters.

This strategy of splitting the decryption key among multiple par-
ties is known as threshold encryption [2]. In threshold encryption,
a ciphertext can only be decrypted by a subset of parties, and the
decryption key is shared among those parties. This allows for a
more secure system, as no single party has access to the decryption
key.

Example 1.3 (ElGamal Threshold Encryption). In ElGamal thresh-
old encryption, 𝑛 parties (arbiters) collaborate to generate a shared
public key and distribute the decryption process. Each party 𝑖 gen-
erates a keypair (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ), where the public key is computed as:
𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖 , and 𝑠𝑘𝑖 is kept private. Each party publishes 𝑝𝑘𝑖 , and
the combined public key is computed as:

𝑝𝑘 =

𝑛∏
𝑖=1

𝑝𝑘𝑖 = 𝑔
∑𝑛

𝑖=1 𝑠𝑘𝑖 .

This combined public key 𝑝𝑘 is used for encryption, while the
corresponding secret key 𝑠𝑘 =

∑𝑛
𝑖=1 𝑠𝑘𝑖 is secret-shared among the

𝑛 parties.
To encrypt a message 𝑚, the ciphertext is computed as 𝑐 =

(𝑐1, 𝑐2) = (𝑔𝑟 , 𝑝𝑘𝑟 · 𝑔𝑚), where 𝑟 is a random value.
To decrypt the ciphertext 𝑐 = (𝑐1, 𝑐2), each party computes a par-

tial decryption. Specifically, party 𝑖 computes 𝑑𝑖 = 𝑐
𝑠𝑘𝑖
1 . The partial

decryptions are then combined by multiplying them together:
𝑛∏
𝑖=1

𝑑𝑖 =

𝑛∏
𝑖=1

𝑐
𝑠𝑘𝑖
1 = 𝑐

∑𝑛
𝑖=1 𝑠𝑘𝑖

1 = 𝑐𝑠𝑘1 .

This result, 𝑐𝑠𝑘1 , is used to decrypt the second component of the
ciphertext:

𝑔𝑚 =
𝑐2

𝑐𝑠𝑘1
.

[1]

2 Zero-Knowledge Proofs
A zero-knowledge proof (ZKP) is a cryptographic protocol that
allows one party (the prover) to prove to another party (the verifier)
that they know a value𝑤 without revealing any information about
𝑤 itself [4]. A ZKP of knowledge has these 5 properties:
• Completeness: If the statement is true, there exists a proof
that proves it is true.
• Soundness: If the statement is false, any proof cannot prove
it is true.
• Proof of Knowledge: If a prover 𝑃∗ can prove, then they
must know𝑤 .
• Honest-Verifier Zero-Knowledge (HVZK): An honest
verifier does not learn anything about𝑤 .
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• Zero-Knowledge: A malicious verifier does not learn any-
thing about𝑤 .

This protocol will be useful in our voting system to ensure that
each voter votes either 0 or 1 for each candidate, and that they vote
for exactly 𝑘 candidates. The ZKP will allow the voter to prove to
the verifier that they have voted for exactly 𝑘 candidates without
revealing which candidates they voted for.

However, one of the limitations of ZKPs is that they can be
interactive, meaning that the prover and verifier must communicate
back and forth to complete the proof. This can be a problem in some
scenarios, such as in our voting system where we want to ensure
that the votes are private and cannot be traced back to the voter.
If we did not have a way to make the ZKP non-interactive, each
of the agents in out problem would have to communicate with the
orgional voter to verify the proof. This would be a problem in our
voting system, as we want to ensure that the votes are private and
cannot be traced back to the voter.

2.1 Non-Interactive Zero-Knowledge Proofs
Definition 2.1 (Random Oracle Model). The random oracle model

(ROM) is a theoretical model in which a hash function is treated
as a random oracle. In this model, the hash function behaves like
a random function, meaning that it produces random outputs for
each unique input. The prover and verifier have access to this hash
function, and the security of the protocol relies on the assumption
that the hash function behaves randomly.

We can use the Fiat-Shamir heuristic and the random oracle
model to transform a three-round sigma protocol into a non-interactive
zero-knowledge proof (NIZK) [6]

In a three-round sigma protocol,

(1) The prover sends a message to the verifier setting up the
proof.

(2) The verifier sends a challenge to the prover.
(3) The prover sends a response to the challenge.
(4) The verifier checks the proof using the challenge and re-

sponse.

This protocol can be transformed into a NIZK by replacing the
verifier’s challenge with a hash of the first two messages.

Now our protocol looks like this:

(1) The prover sends a message to the verifier setting up the
proof.

(2) The prover computes the challenge as the hash of the first
message and sends it to the verifier.

(3) The prover sends a response to the challenge.
(4) The verifier checks the proof using the challenge and re-

sponse.

This insures that the prover does not have to interact with the
verifier, and the verifier does not have to interact with the prover.
Moreover, the proof is secure against a malicious prover and verifier.
The prover cannot predict the challenge, and the verifier cannot
influence the challenge to bias the proof in their favor. This ensures
that the proof is secure against a malicious verifier and maintains
the zero-knowledge property.

3 𝑘-candidate ZKP
The votes that the voter sends to the tallyer are of the form:

(𝑔𝑠𝑘 , 𝑔𝑟1 , 𝑔𝑠𝑘 ·𝑟1+𝑣1 )

(𝑔𝑠𝑘 , 𝑔𝑟2 , 𝑔𝑠𝑘 ·𝑟2+𝑣2 )
.
.
.

(𝑔𝑠𝑘 , 𝑔𝑟𝑛 , 𝑔𝑠𝑘 ·𝑟𝑛+𝑣𝑛 )
where 𝑛 is the number of candidates, 𝑣𝑖 is the vote for candidate 𝑖 ,
and 𝑟𝑖 is a random number.

Therefore, when we multiply the votes together componentwise
and preseve first component, we get

(𝑔𝑠𝑘 , 𝑔𝑟 , 𝑔𝑠𝑘 ·𝑟+
∑𝑛

𝑖=1 𝑣𝑖 )
where 𝑟 =

∑𝑛
𝑖=1 𝑟𝑖

This now looks like a single ElGamal ciphertext but we have the
extra information about the sum of the votes. Now we can divide
the last component by 𝑔𝑘 , where 𝑘 is the number of candidates that
we require the voter to vote for, and check if the result is an Elgamal
ciphertext to verify that the voter voted for exactly 𝑘 candidates.

We can use a Non-Interactive Zero-Knowledge Proof (NIZK) to
prove that the voter voted for exactly 𝑘 candidates. This will mirror
the same ZKP that we used to prove that a vote is an encryption of
a 0 or 1.

(1) Our voter sends all of their votes to the tallyer.
(2) The voter adds a ZKP to prove that they voted for exactly 𝑘

candidates:
(a) The voter creates a random number 𝑟 ′ ← Z𝑞
(b) The voter sends (𝑔𝑟 ′ , 𝑝𝑘𝑟 ′ ) to set up the zkp challenge.
(c) The voter computes the challenge as

𝜎 = 𝐻 (𝑔𝑟 , 𝑝𝑘𝑟 , 𝑔𝑟
′
, 𝑝𝑘𝑟

′
)

where 𝐻 is a hash function
(d) The voter sends 𝑟 ′′ = 𝑟 ′ + 𝜎 · 𝑟 to the tallyer

(3) Now the tallyer can verify the proof:
(a) The tallyer computes 𝑔𝑟

′ · (𝑔𝑟 )𝜎 and checks if it is equal
to 𝑔𝑟

′′

(b) The tallyer computes 𝑝𝑘𝑟
′ · (𝑝𝑘𝑟 )𝜎 and checks if it is equal

to 𝑝𝑘𝑟
′′

(c) If both checks pass, the tallyer can be sure that the voter
voted for exactly 𝑘 candidates.

(4) The tallyer can now strip the signature and continue with
the voting process.

4 Vote Architecture Summary
Since the Vote project is already a cryptographically secure voting
platform, we will be building on top of the existing Vote project.

We will build off of this existing architecture and modify it to
allow for multiple candidates. The main changes we will make
are that each vote will contian subvotes for each candidate which
will be tagged with the candidate’s index. Essentially, we will be
running 𝑛 elections - one for each candidate.

(1) Registrar: The registrar will check that all voters are reg-
istered to vote only once. For each voter, they will issue a
certificate for their verification key for each candidate. The
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registrar will also check that each voter submits a vote for
all 𝑛 candidates.

(2) Tallyer: The tallyer will post votes on a public bulletin board.
They will check that the signature is valid and strip the
signature from the vote. It will do this for each subvote for
each candidate. The tallyer will also check that the ZKP is
valid and that the voter submits a vote for all 𝑛 candidates.

(3) Arbiters: The arbiters will generate the election parameters
and decrypt the final result. They will generate the threshold
encryption keys. There will be 𝑡 arbiters and each will have
their (𝑝𝑘𝑖 , 𝑠𝑘𝑖 ). They all reveal 𝑝𝑘𝑖 to the public, so that
everyone can compute the full public key 𝑝𝑘 .

(4) Voters: The voters will be able to vote, view, and verify the
final result. Theywill encrypt their votes using the public key.
The voter will sign this vote using their signing key. They
will send this vote to the tallyer. The voter will also generate
a ZKP to show that they voted for exactly 𝑘 candidates.

5 Project Overview
In this project, we extended the Vote project to allow voters to
vote for multiple candidates while ensuring that each voter votes
for exactly 𝑘 out of 𝑛 candidates. To achieve this, we modified the
existing cryptographic voting infrastructure to handle multiple
subvotes per voter and incorporated zero-knowledge proofs (ZKPs)
to enforce vote validity.

The key components of our implementation are:
• Voting Mechanism: Each voter submits a vector of en-
crypted votes, where each entry corresponds to a candidate
and is either 0 or 1. We used homomorphic encryption to
preserve vote privacy while enabling the tallying process.
• Zero-Knowledge Proofs: Voters generate ZKPs to prove
that their votes are valid (i.e., each vote is either 0 or 1) and
that they voted for exactly 𝑘 candidates, without revealing
which candidates they selected.
• Threshold Encryption: To enhance security, the decryp-
tion key is split among multiple arbiters. This ensures that
no single party can decrypt the votes, and the final tally is
decrypted collaboratively.

This project highlights how cryptographic techniques like ho-
momorphic encryption, threshold encryption, and zero-knowledge
proofs can be combined to build a secure and privacy-preserving
voting system. The system ensures that votes remain private, voters
cannot cheat by voting for more than 𝑘 candidates, and the final
results are verifiable by all participants.

6 Design Decisions and Difficulties
In designing the extension of the Vote project to support multiple
candidates, several key decisions had to be made to ensure correct-
ness, security, and maintainability. Below, we outline the major
design choices and the challenges encountered during implementa-
tion.

6.1 Design Decisions
6.1.1 Vote Representation. We decided to represent each voter’s
submission as a group of encrypted subvotes, where each subvote
corresponds to a candidate. This approach allowed us to leverage

homomorphic encryption to tally votes for each candidate indepen-
dently. Additionally, we included a zero-knowledge proof (ZKP)
for each vote to ensure that it was either 0 or 1. A separate ZKP
was used to prove that the sum of the votes in the vector equaled 𝑘 ,
enforcing the constraint that each voter votes for exactly 𝑘 candi-
dates.

6.1.2 Candidate Tracking. To track votes for individual candidates,
we added a candidate identifier field to the database for both the
Vote and Partial Decryption tables. This allowed us to associate
each subvote with its corresponding candidate and ensured that the
tallying and decryption processes could handle votes for multiple
candidates seamlessly.

6.1.3 Message Serialization. Wemodified the message serialization
format to include the candidate identifier alongside each vote. This
ensured that the tallyer and arbiters could correctly process votes
for different candidates without ambiguity. The serialization format
was updated to handle vectors of votes and ZKPs, rather than single
votes.

6.2 Challenges and Bugs
6.2.1 Refactoring. One of the most monotonous aspects was up-
dating the voter code to handle vectors of votes and ZKPs. Initially,
there were several instances where the code still referenced single
votes (e.g., this->vote instead of this->votes). These references
caused votes to be overwritten and led to errors during the unblind-
ing process.

6.2.2 Serialization Errors. During the implementation, we encoun-
tered issues with serializing and deserializing the candidate iden-
tifier. Specifically, the use of put_integer() and get_integer()
functions, which operate on CryptoPP::Integer types, led to sub-
tle bugs. These were resolved by ensuring consistent handling of
candidate identifiers across all serialization and deserialization rou-
tines.

6.2.3 Database Schema Updates. Initially, the database schema did
not include fields for candidate identifiers in the Vote and Partial
Decryption tables. As a result, the tallyer correctly inserted votes
for multiple candidates, but the arbiter read all votes as belonging
to the same candidate. Adding candidate fields to the schema and
updating the corresponding database functions resolved this issue.

6.2.4 ZKP Verification. The ZKP for the 𝑘-candidate constraint
required careful implementation to ensure that the sum of the votes
was checked without revealing individual votes.

6.3 Lessons Learned
This project highlighted the importance of modular design and rig-
orous testing when extending cryptographic protocols. By isolating
changes to specific components (e.g., vote representation, database
schema, ZKP verification), we were able to incrementally build and
debug the system. Additionally, the use of logging to the console
and database allowed us to trace the flow of data and identify issues
more effectively.
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7 Results and Conclusions
We successfully extended the Vote project to support multiple candi-
dates while ensuring that each voter votes for exactly 𝑘 candidates.
The system is built on a foundation of homomorphic encryption,
threshold encryption, and zero-knowledge proofs, providing a se-
cure and privacy-preserving voting mechanism.

The final implementation allows voters to submit encrypted
votes for multiple candidates, with ZKPs ensuring the validity of
each vote and the total number of votes. The use of threshold
encryption ensures that no single party can decrypt the votes,
enhancing the security of the system. The project demonstrated the
feasibility of combining cryptographic techniques to build a secure
voting system that can handle multiple candidates and enforce
constraints on voter behavior.
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