Across The Spider-Verse Style Transfer

Arjan Chakravarthy, Abhijith Chandran, George Chemmala, and Siddu Sitaraman

May 10, 2024

Abstract

This research works to enhance image style transfer, applying artistic styles to content images using CNNs, with a focus on the movie
Across the Spider-Verse. Inspired by prior works, the project optimizes style transfer for the content in the movie by using techniques like
transfer learning on the CNN used as the base for style transfer. Results show effectiveness, especially when averaging styles. Challenges

have included data collection and model training complexities.

1 Introduction

The primary objective of our project is to explore and enhance the
capabilities of image style transfer, a powerful and creative appli-
cation of convolutional neural networks (CNNs) . Style transfer
involves applying the artistic style of one image to the content of
another, allowing for the creation of unique, stylized images. In
our case we chose to apply this to the movie Across the Spider-
Verse. Our interest in this area was sparked by seminal works
such as those by Gatys et al., 2015, which introduced the neural
algorithm of artistic style transfer, and subsequent improvements
by Dumoulin et al., 2016 that proposed methods for more versatile
style applications.

Our project seeks to re-implement and extend these founda-
tional approaches. The reason for choosing this particular area
of research stems from its blend of art and technology, presenting
a fascinating challenge in computer vision and machine learning.
Specifically, our focus is on optimizing the style transfer process
for better speed and accuracy with the content we are working
with. This project will primarily involve elements of structured
prediction and unsupervised learning, as the task does not require
labeled data in the traditional sense but rather leverages the in-
trinsic properties of the images themselves.

2 Background

We've drawn inspiration for our project from various sources
(listed below). We are interested in utilizing style transfer which
is quite well documented. The first two sources (Gatys et al., 2015
and Dumoulin et al., 2016) broadly introduce the concept of im-
age style transfers using CNNs. Beyond these original reference
papers, we have found other sources that show novel applica-
tions and extensions of style-transfer that may be helpful. For ex-
ample, we have looked into many cutting-edge improvements to
model speed and accuracy in papers such as Arbitrary Style Trans-
fer in Real-time with Adaptive Instance Normalization Huang et
al., 2017 which uses adaptive instance normalization to quickly
change styles based on learned feature patterns . We have also
been looking at new approaches to quantifying stylized image loss
as described in A Style-Aware Content Loss for Real-time HD Style
Transfer Sanakoyeu et al., 2018. Finally, we have the goal of po-
tentially extending our work to videos and even real-time transfer,
as detailed in the prior and many other papers.

3 Methods

We used a combination of transfer learning and style transfer dur-
ing this project. Transfer learning was used in order to improve

the CNN we were using to identify features in order to create style
and content representations for style transfer.

3.1 Transfer Learning

For the transfer learning, we attempted to train the VGG model
on our own data that we had collected from the movie in order
to improve the results on the style transfer. Our idea was that by
training the model architecture on our own dataset, we would be
able to make the layers that are later used for style transfer more
accustomed to images from the movie. To achieve this, we set
up a classification task where the aim of our model was to take
in an image from the move (from one of the five universes) and
output the universe from which the image was taken. We only
used a training dataset since we were not too preoccupied with the
accuracy of our classification model. This was because we wanted
the CNN layers of the model to be tuned towards our dataset and
the classification task was simply a means to achieve this aim. For
this TransferCNN, we used the convolutional layers from the VGG
model but constructed our own head of Dense layers (specifically
three dense layers with dropout in between) so that our model
would be able to train in a reasonable amount of time. We trained
this CNN classification model for 10 epochs with a batch size of 16
and a learning rate of 107>, After training the model, we saved the
weights of the model so that when we performed the style transfer,
we could load the model weights and choose the certain layers that
we would want to apply for the actual style transfer.

3.2 Style Transfer

The idea behind style transfer is to use a pre-trained CNN model
to detect features and later decompose images into their style and
content representations. We used the CNN we had developed from
the previous section for this component.

We defined a class called StyleContentModel which selects
layers from the CNN to use for style and content. Typically style
layers are taken from throughout the entire model (reflecting a
representation based on all types of features), while only a sin-
gle content layer is taken towards the end (reflecting a represen-
tation of only big picture items). We then take a gram matrix
of the features in the style layers in order to get a better idea
of how features pair together. We also set up a call function for
StyleContentModel to return style/content representations for
any image we give it.

Next we define a class called StyleTransfer which uses
StyleContentModel as an extractor of style/content representa-
tions.


https://arxiv.org/pdf/1703.06868
https://arxiv.org/pdf/1703.06868
https://arxiv.org/pdf/1807.10201
https://arxiv.org/pdf/1807.10201

Style Transfer

Style Img .

. Content Img
Output Img l
z Content
Loss Loss

Figure 1. Style Transfer Architecture: Orange arrows represent extracting
style/content representations, while the purple arrow represents gradient
descent

We first extract the style/content representations using
StyleContentModel for both the style image and the content im-
age to get our style and content targets respectively. Then we
extract the style/content representations for our output image
(which is initialized as our content image) and compare the repre-
sentations with our targets with MSE to get our style and content
loss. Finally we combine the style and content loss with weight-
ings to get the loss that we use to preform gradient descent on our
output image.

4 Results

The images below depict some of the results that we received using
our model for the style transfer.

Overall, we noticed that using the averaging of multiple styles
2 functionality made the style transfer arguably stronger, whereas
with a single image 3, the style transfer naturally very strongly
depicted the style of that single image. Moreover, with the averag-
ing of multiple styles, sometimes certain areas of the image would
have less chromatic artifacts (e.g., the green next to the nose on 3).
For our results, we primarily used images from Gwen’s universe
as we found those images to have the most style (in relation to im-
ages from other universes in the movie) and would batter capture
a good style transfer.

With our implementation, we also set up a loss graph 4 in or-
der to analyse any issues with our model. We’d typically see plots
reminiscent of an exponential decay, which would approach val-
ues around 10°. Since we start off with the content image it is
expected to initially see content loss start at 0 and then jump up
after the model makes a correction for style loss 5 and then slowly
decrease 6 7.

Figure 2. Style Transfer using Multiple Style Images

5 Challenges

One significant challenge that we faced was with the data collec-
tion part of the project. Since we wanted to collect data to train
our TransferCNN (to solve a classification task), we needed im-
ages from each of the universes. To achieve this, we created a
function that would sample images from each universe at regular
intervals. The five universes from the movie that we collected data
for were Miles’ Universe, Gwen’s Universe, Pavitr’s Universe, the
headquarters universe, and Universe 42 (the universe at the very
end of the movie). Since we had more screen time for some of
these universes, it was easier to collect data, but for some of the
ones with less screen time (especially Universe 42), the images that
we collected were very similar since we were sampling more than
one image each second. This led the data in some universes (espe-
cially the ones that had more footage) to be more diversified while
the images in one or two of the images were more homogenized.
To tackle this challenge, we applied augmentations to increase the
size of our dataset. Initially we collected 800 images for 3 universes
and around 500 images for the other two images. By applying data
augmentations, we tripled the size of our dataset. However, one
problem we still faced was that the imbalances in the dataset size
for each universe led our TransferCNN model to always predict
one class (usually one of the classes with 2400 images). Since the
data was imbalanced, the model could just predict this single class
and receive a decent accuracy without really learning the features
of each universe. To tackle this problem, we randomly sampled
1335 images from each universe which would end up compris-

Deep Learning (2024)



Style Transfer

Figure 5. Initial Train Step

Figure 3. Style Transfer using Single Style Image

Figure 6. Mid Training

Style and Content Losses

—— Style Loss
—— Content Loss

107 4

Loss

106 o

T T T T T T T
0 200 400 600 800 1000 1200 1400
Iteration

Figure 4. Style and Content Loss of 2
Figure 7. Almost Done

Deep Learning (2024) 3



Style Transfer

ing of our final dataset that we used to train the model. Since we
had the same number of images for each model, this dataset now
worked well for our TransferCNN model.

6 Reflection

In relation to our base, target, and stretch goals, we think we did
pretty well. We achieved our base and target goals but did not have
enough time to attempt the reach goal. We also really liked the re-
sults that we got from running our own TransferCNN model to
apply the style transfer, and we found that averaging the styles
across multiple style images generally made the output images
more clear. Our reach goal was to work on implementing video
style transfer, however, we did realize that this would be a bigger
project given the time that we had and the other work we wanted
to achieve with image style transfer itself.

Our model did work out the way we expected it to, though there
were definitely challenges with building the TransferCNN model
and getting it to produce reasonable results. There were several
models that we trained that produced pretty bad results either los-
ing most of the content image or applying the style incorrectly to
the image. But eventually we were able to train a model that pro-
duced pretty good results, and we were happy with the outcome.

We had to change our approach quite a bit as we progressed
through the project. We initially believed that implementing the
TransferCNN model would be quite simple, but the whole pipeline
from collecting the data to actually producing reasonable results
was quite time-consuming. Initially, we thought that we could de-
sign our own CNN architecture to train our model on, however
we quickly realized that the popular CNN architecture for style
transfer was the VGG architecture, so we ultimately settled on
this. Even with the VGG architecture, we tried training two differ-
ent models, one where we loaded previous weights and one where
we did not. Even though the accuracies on the classification part
were quite similar, the results with the style transfer were gener-
ally better when using the previous weights, as expected. Initially,
we also thought we may get better results by only training the
few layers that actually do the style transfer, but we ultimately
changed this approach to train all of the layers of our model as we
noticed slightly better results.

If we had more time, we would like to add more functionality
around averaging different style images. We currently achieve this
functionality through the gram matrix (as explained earlier). To-
wards the end of the project, we set up some functionality where
we could derive the variance of the styles to the average gram
matrix. This would help in determining good images to combine
when utilizing the average gram matrix functionality. However,
we were not able to fully integrate this into our model, so if we
had more time, we would likely spend time developing this fur-
ther.

Our biggest takeaways from this project is learning the full
model workflow. This project forced us to go through each stage
of model pipeline (starting with data collection and preprocessing
and ending with being able to easily generate results). We gen-
erally realized the importance of properly collecting and prepro-
cessing the data for our model, which although may not seem like
a critical step in the model deployment pipeline proves quite im-
portant in guaranteeing good results. Besides learning a lot about
Style Transfer and CNNs in general, we also learned that breaking
down our task into smaller, more manageable tasks not only al-

lowed each of us to contribute to the final project, but also reach a
working version of our model faster. Overall, we all really enjoyed
working on this project.

Acknowledgements

Special thanks to my goat Aryan Singh

References

Dumoulin, Vincent, Jonathon Shlens, and Manjunath Kudlur (2016). “A Learned Rep-
resentation For Artistic Style”. In: CoRR abs/1610.07629. arXiv: 1610 . 87629. URL:
http://arxiv.org/abs/1610.07629.

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge (2015). “A Neural Algorithm
of Artistic Style”. In: CoRR abs/1508.06576. arXiv: 1508.06576. URL: http://arxiv.
org/abs/1508.06576.

Huang, Xun and Serge Belongie (2017). Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization. arXiv: 1703.06868 [cs.CV].

Sanakoyeu, Artsiom et al. (2018). A Style-Aware Content Loss for Real-time HD Style
Transfer. arXiv: 1807.10201 [cs.CV].

Deep Learning (2024)


https://arxiv.org/abs/1610.07629
http://arxiv.org/abs/1610.07629
https://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1807.10201

	Introduction
	Background
	Methods
	Transfer Learning
	Style Transfer

	Results
	Challenges
	Reflection

