FINITE DIFFERENCES WITH ONE VARIABLE

Definition of Finite Differences:
n ar@=LEDIO @ D A0 = AR 7)
Example:
If f(x)=x+3x then
Af(x)=fx+D)—f(x)=(x+1)* +3(x+1)—x" -3x=2x+4
A’ f(x) = AMAf (x) = ARx +4) =[2(x +1) + 4] -[2x +4] =2

Definition of factorial exponents:
x? =x(x=D(x=2)..(x-n+1) ifn2>1
O -1
Examples: 1) x¥ =x(x—-D(x-2)...(x=5+D) =x(x-D(x-2)(x-3)(x-4) (5 factors)
2) 79 =7(7T-1)(7-2)=210
3) 1" =0 for all n greater than 1.

Theorems:
1) Iff(x)=x" then Af(x)=nx""
Proof:

F(x)=x" =AM (x)=[x+1]" - [x]” =[(x+ Dx(x = 1)...(x = n + 2)] - [x(x = 1)...(x = n + 2)(x = n + 1)]
= x(x I3 1)()( = 2)[(X o 1) 0 (X <zl 1)] = x“””[n]

2) Ak (x)]=k[Af (x)]
Proof:

ALK ()] = Kf (x +1) = kf (x) = k[ f (x +1) = f(x)] = K[Af (x)]
3) Al (x)xg(x)]= 4 (x) +Ag(x)

Proof:

ALf(x)+g@)]=[f(x+1)+g(x+D]-[f(x) +g(x)]
=[f(x+D) - f(D)]+[g(x +1) —g(x)] = Af (x) + Ag(x)
The proof for A[ f(x)—g(x)] is similar.

4) If f and g are functions defined on the integers and Af'(x) = Ag(x) then f(x)=g(x)+c.
Lemma: If h(x) is defined on the integers and Ah(x)=0 for all x, then h(x) = ¢, a constant.

Proof:
Ak(x) = h(x+1)—h(x) =0 = h(x+1) = h(x) for all integers x = h(x)=c.

Proof of the Theerera:
Af (x) =Ag(x) = A (x)-Ag(x)=0 = A[f(x)-g(x)]=0 = f(x)-gx)=c

5 Ad"=a"(a-1)
Proof:
Ad* =a"'-a* =a"(@-1)



Definition of Finite Antidifferences:
Y f(x)s F(x) ifand onlyif AF(x)= f(x).
Note: Because of Theorem 4, if two function F(x) and G(x) are both finite antidifferences
of f(x) then AF(x)= f(x)=AG(x) = F(x)=G(x)+c. Hence antidifferences
are actually groups of functions written as “[an expsession involving x] + ¢”,
where the difference between one member of the group and another is in the value of c.

Theorem 6

AL =—1—Aax+Ac=—l-a"'(a—1)+0=a,x
a—1 a-1 a1

Definition of Summation:

D () =fla)+ fla+D)+f(a+2)+...+ f(b-1)+ f(b)

Theorem 7. The Fundamental Theorem of Summations

b
Y f(x)=F(b+1)-F(a) =[F(x)]j*’ where AF(x) = f(x). (Note: 3 fi(x)=F(x).)
Proof:

b b
Y. f(x)=D AF(x)
=[F(a+1)-F(a)]+[F(a+2)-F(a+1)]+[F(a+3)-Fla+2)]+..+[F(b+1)- F(b)]
=F(b+1)-F(a)
Note: The F(a+1) of the first group cancels out with the F(a+1) of the second group etc.

The only terms that do not cancel out are the -F(a) from the first group and the
F(b+1) from the last group.



Applications:

1) Find a formula for a sequence such as: g = 0 5 22 57 116 .-:.205

Solution;

n

Aa,=5 17 35 59 89
ANa,=12 18 24 30
Na,=6 6 6
Because A'a, =6, » Na, =Na, =6n" +c,.
Since A2aI =12, 12 =6(1)? +¢, and c, =6.
Because A’a, = 6n'" +6, )" Na, =Aa, =31 +6n" +¢,.
Since Aa, =5, 5=3(1)? +6(1)" +¢, and ¢, =-1.
Finally a, =n +3n” =n” +¢, with a, =0.
Since a, =0=19+3(1)? -1V +¢,, ¢, =1

Thus a =n" + 30 —gW 345 —2p 41,

2) Find a formula for a sum such as: Z t’

Solution:

t=1

1) Represent t2 in terms of t factorials.

2)

Use synthetic division to divide by t-0, then t-1, then t-2 etc.

0/100

00

100 implies constant term =R = 0
1/1 0
1

11 implies first degree coefficient =R = |

2|1
=l implies second degree coefficient = R = 1

Thus #2=t@ +tV 40

n n n t(3) t(z) n+1 (3) n+1 (2) 1(3) 1(2)
thzzta)“m:ZA[ _+)®  @in® 1 1@
=1 t=1 t=1

_+_
S 3 2 -
:(n_l_])(z){n—l+1]=(n+1)n[2n+lJ= n(n+1)(2n+1)
3 2 6 6



= {8 52 146 420 1234

3) Find a formula for the sequence a,

Solution:
@, 18 52 146 420 1234
Aa, 34 94 274 814
Aa 60 180 540

n

We notice that 60 * 3 =180 and 180 * 3 =540.

It follows that  A’a, = 4-3" where A is some constant. We note that A = 20 works.

Then
A’a,=20-3"

ZAzan =Aa, = 23031 +¢ =10-3" +¢

Aa,=34=10-3'+¢ = ¢, =4

10. n
ZAan =a, =ZIO-3” +4= 3_31 +4n" +¢,=5-3"+4n+c,

a,=18=5-3'+4-1+¢, = ¢, =-1

Thus, a,=5-3"+4n-1

n-1

4) Find an explicit formula for a+ar+ar’ +ar’ +..ar""' = Zar
x=0

Solution:

n=1+1
= 3 0
5‘: o ket ar" —ar’ a(r"-1)
ar’ =| — =
B Feil =1 pd

0



FINITE DIFFERENCES WITH TWO VARIABLES

Definition: ’
If f(x,y) is a function of two variables then

Axf(xay) £ % f(x+ lay)-f(xay) and A_,vf(X,J’) = .f('xay+ 1) —f(X,J/)
Similarly, Y f(x,y)=F(x,y) iff AF(x,y)=f(x,y) and
2 Sy =F(xy) iff AFxy)=/(xy)

Applications:
1) Find a function f(x,y) which has the following array of values.

Y=4| 69 76 85 96 109 124 141
Y=3| 31 47 45 55 67 81 97
Y=2| 11 16 23 32 43 56 71
Y=i. 3 I 13 4 31 43 wid
X= ] 2 3 4 2 6 7

Using differences in the row Y = 1, yields f(x,1) = x> + x +1
Similarly f(x,2) =x* +2x+8
f(x,3) =x? +3x+27
f(x,4) =x? + 4x + 64
and {(x,5)= x> +5x+125

Applying differences to these yields

x> +5x+125

x+i61
x” +4x+64 24

X + 37 6
o = 18

X %19 6
X 42548 12

X 7
x2+x+1

Thus

Nf=6=>A f=6y+c and A, f(x])=12=6y+c, = A, f(x,y) =6y +6

A"_f(x,y) = 3y(2) +6y+c, and A_‘.f(x,l) =x+7=301"% + 6(1) + ¢, = AA‘_f(x,y) 2 3t 4 6y+x+1
)=y +3yP +xp+Ty+e; and f(x)=x+x+1=1) +30)? +x1) +1(1) + e

(3)

yields f(x,3)=y® +3yP +x30+ Ty +x’ =y(y-D(y-2)+3y(y D+ + Ty +x> = 3* + xp + x°



2) Consider the following double summation.

ZZ[xy x? +2y-5]=

x=1 y=2

M»

(2) 8
{ ! XDy 4@ —Sy}
2

[(28x —8x* + 56— 40) — (x — 2x® +2-10)]

I
M- 5

x=]

Il

[-6x? +27x + 24]

(2)
25 1 21X | o4y ]
2 1

(=120 + 270 +120) — (0 + 0 + 24)
246

Ma

o
i
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USING PARAMETERS TO FIND y = f(x)

Suppose you are given a table of (x,y) values in which the increments in x are not a constant like
inl, 2,3, ... for ap.
Example: x | -2 |-1]1]5]13]29]61 |
y| 0] 0]2]6]|12]20] 30 |

How could you find y = f(x)?

Solution:
Step 1: Use finite differences to find x and y as sequences in terms of t.

Using finite differences on the sequence of x’s above we would get x=2""-3 = g(¢t).
Similarly using finite differences on the sequence of y’s yields y= -3t+2 =h().
Step 2:
log(x+3) 3

2
Then [:g_l(x)z w+1 =3 lo_g(ﬂ_i_l 4=
log 2

and y=h(t)=
y=ht) |:log2 log?2



RECURSION EQUATIONS

Definitions: ,
1) A recursion equation of order n is an equation that can be written in the form

a,f(x+n)+a, f(x+n=-D+a,,f(x+n-2)+...+a,f(x) = p(x), where a,, a,,...a, are constants
2) A homogeneous recursion equation of order n is one for which the p(x) in
the above equation is equal to zero.
3) Notation: If f(x) is a solution of a recursion equation of order n then
the homogeneous solution of that recursion equation, /,, (x) , is actually the set of functions
that are solutions of the associated homogeneous equation.
' f»(x) represents any one particular solution of the original equation.
Representations of f, (x) include constants that change from one member of the set to another .
(Note: In Theorem 4, f,,(x) = {c}.)
4) A boundary value condition of a recersion equation is a specific value of any function that is a

solution of the recursion equation.
5) The characteristic equation associated with the recursion equation

af(x+n)+a,, f(x+n-1)+..+a f(x)= p(x) isthe equation

U

a A" +a, A" +..+a,=0 where 4 isa complex number.

n—1

Theorem 8. If f(x) and g(x) are solutions of the same recursion equation of order n then
f(x) — g(x) is a member of f,(x) .
Proof:
If af(x+n)+a,, filx+n—1)+..+a,f(x)= p(x)
and a,g(x+n)+a, glx+n—0D+..+a,g8(x) = p(x)
then a,f(x+n)+..+a,f(x) = a,g(x+n)+...+a,g(x)
a[f(x+n)-gx+m]+a, [f(x+n-1)-gx+n-1D]+..+a,[f(x)-g(x)]=0

Thus f(x)-g(x) is a homogeneous solution of the equation.

Comment:

Recursion equations, without boundary value conditions, generally have more than one solution. The
set of solutions of a recursion equation is called the general solution of the equation. General solutions
of recursion equations can always be written in the form

J@ =X+, (x0) ={fp(x) + ()| f(x) € [, (x) }
It is easy to see that all such functions are solutions of the recursion equation because
a fx+my+a, fx+n—1)+..+a,f(x)

=a”[fp(x+n)+fc(x+n)]+a,,_][fp(x+n—1)+fc(x+n—l)]+...+a0[fp(x)+fc(x)]
={a,f,(x+n)+a,  f,(x+n-D+..+a,f,cN}+{a fx+n)+a, f(x+n-1)+..+a,f.x)}

=p(x)+0

In effect, the f,(x) and f, (x) are superimposed on top of each other.

When a recursion equation is accompanied by a sufficient number of boundary value conditions, one is
able to determine which member of f(x) is the solution of the problem.




Definition:
A linear combination of a set of functions, { /|, f,....f, } is any expression of the form

¢ e, filx)+ e, 5 (x) + ., 1 (5}

Typically every member of f,, (x) can be written as a linear combination of some subset of f,, (x) .
The number of members in the smallest subset of £}, (x) that can be used to represent every member of
[y (x) is the dimension of f,, (x) . The members of any such minimal subset of f,, (x) are said to span
i (x) . (In Theorem 4, £, (x) ={c} and f},(x) is spanned by the one function f(x) = 1. Thus the
dimension of this f},(x) is 1 because only one function is needed to span it.)

Theorem 9A. If the roots 4,,4,,...4, of an nth order recursion equation’s characteristic equation are

distinct then the set of homogeneous functions of the recursion equation is spanned by {4, 4),...4"}.

Proof in the case when n=1.

a,f(x+1)+a,f(x)=0 yields the characteristic equation a4 +a, =0 and this yields A = ]
a]

af(x+D)+a,f(x)=0 = f(x+1)=—%f(x)=lf(x)

=AAS(x-DFA f(x-D)=...= 2" f(x-x) = £(0) A"
=  f@)=f0A =c A
The case n = 2 will be discussed later.

Finding a particular solution. (Note: All you have to do is find one. Any one will do.)
If p(x) is a polynomial there will always exist a particular solution that is of the same degree as p(x) or

less. The coefficients of f (x) can be found by equating the corresponding coefficients on both sides of
the equation: a"fp (x+n)+ an_,fp (x+n=1)+..+ aofp (x)= p(x)

If p(x) is an exponential function there will always exist a particular solution that is an exponential
function with the same base.



Theorem 9B. Let A and A, be the roots of the characteristic equation associated with the recursion
equation, f(x+2)+a,f(x+1)+a,f(x)=p(x) then ;

’ A" +BA; when 4, # 4,
x)= _ where A and B tants.
Ju(x) {Ax/l"“ LB whend =4 =4 aj are constants

Proof:
Note that the characteristic equationis A’ +a,4+a, = 0 and its solutions are:

~a, ++la] —4a, ~a, —\Ja} —4a,

A= g and A, = >

Let g(x) = f(x+1) + kf(x), (equation 1) where k is some constant to be specified later.

Then g(x+1) = f(x+2) +kf(x+1). It follows that f(x+2) = g(x+1) — kf(x+1). Substituting this into the

homogeneous recursion equation we get: [g(x+1)—=kf (x+1)]+a, f(x+1)+a,f(x)=0. Thus,
gx+D)+[a, —k]f(x+1)+a,f(x)=0. (equation 2)

From equation 1 we get f(x+1) = g(x) — kf(x). Substituting this into equation 2 we get,
gx+D)+(a,-k)[gx)-f(x)]+a,f(x)=0. It follows that

g(x+1)+(a, —k)g(x)+[k’ —ak+a,]f(x)=0.

y (not necessarily distinct)

This will be a first order recursion equation in g if welet k be aroot of k> —ak+a, =0.

a, +\[a,2 —4a,
—_——=4 +a,.

2

Thus we choose k to be

Solving the remaining first order recursion equation in g we get:
ﬂ’g +(a] —k) =0 = A‘g =k—a] =ﬂ1 and since gp(_X)zo’ g(x) = A!A{\' & = A'ﬂ{r,

Substituting back into equation 1 we get :
fG+D+(A +a)f(x) =44 = p(x).
This is a first order recursion equation in f with f,(x) =B(-4, —a,)" = BA; .

Solving for f,(x)=CA" we get C/?-,x+l +(A4 +a)CA =A"A’. 1t follows that

if 24, +a, #0then C= = A4, aconstant and f(x)=f,(x)+f,(x)=AA4" +BA;.

24, +a

f(x)=AD)"+B1)" +C(2)" =71f 24, +a,=0 then A = _Ta‘ =A, =A. In this case we find a particular
solution of the type

f,(x)=CxA"". Substituting into f(x+1)+(4 +@)f(x) = A'A" = p(x), we get

Cx+DA" +(A+a)CxA" = 4'A" = CA™' (A+A+a)+CA" =CxA"(0)+CA = 4'A".

Thus C=A’=A and f(x)=AxA"" +BA"



Theorem 9A also works for third order recursion equations and for recursion equations in which the roots
of the characteristic equation are complex numbers, as illustrated by the following examples:

Example 1:
D=2, f(2)=-3, f(3) =6 :
SO b e which has values 2, -3, 6, -3, 22, -3,...
f(x+3)=—f(x+2)+4f(x+1)+4f(x)+7
Solution:
A+ -44-4=0 > A=1,-2,0r2
Therefore f,, (x) = A(-1)" + B(-2)" +C(2)"
Trying f,(x)=C weget C=-C+4C+4C+7 and f (x)=C= ——;—
Thus, f(x)=A(-1)"+B(-2)"+C(2)" —% :
: - 11 1 1
Using the boundary conditions, we get A = = B o and C = 3
. 11 R | EE =T ;i .
In conclusion, f(x)= _E(_l) —5(—2) +§(2) —g which yields the same sequence.
Example 2:
=35, f(2)=-4
f=5 72 which has values 5, -4, -7,3,7, -2, ...
Sx+2)=—f(x)+x-3
Solution:

A+1=0 = A=ti = f,(x)=A40)"+B(=)
1
f,(x)=ax+b = a(x+2)+b=—ax—-b+x-3 = a=5 and h=-2

Thus, f(x)=A@)"+B(-i)" + %x -2.

Using the boundary conditions, we get 4= 2 —41 - and B= 2 +413l ‘

6-13i 6+13i
+

In conclusion, f(x)= ()"

1 ()" + 2 _2 which yields the same sequence

10



Applications
1. In an amortization problem f(x) represents the account balance at the end

of x periods, f(0) = original Principle=P and f(x+1)=(1+r/n)f(x)+d,
where r is the annual interest rate, n is the number of amortization periods per year,
and d is the amount added to or removed from the account each period. Find an
explicit formula for f(x).

Solution: Let K =(1+£). Then f(0)=P and f(x+1)=Kf(x)+d.
n

d

The characteristic equationis A=K and f (x)=c = f, (x)= e

and using the boundary condition f(0) =P we get

Thus, f(x)=4-K"+- -

Lo
f(A)—(P‘F—I{Tl)K +1_.K

2. The Fibonacci sequence is defined by f(1)=f(2)=1 and f(x+2)=f(x+1) + f(x).
Find an explicit formula for this sequence.

145
S

Solution: The characteristic equation is A’ = A+1 which has the solutions A =

A particular solution is f, (x)=0 and therefore f(x)= A(1+2\/§J +B(1 —2\/5]

Using the boundary conditions we eventually get:

#5757

=313 TR

3. Five sailors, marooned on an island, pick a bunch of coconuts and leave them overnight to be divided
evenly among themselves the next day. During the night the first sailor awakens and decides to take
his share. Dividing the pile by five he has an extra coconut left over which he throws to a monkey and
then takes his fifth. The second sailor comes along and does the same thing. Throwing an extra
coconut to the monkey and taking his fifth of the remaining pile. This continues through all five
sailors. The next morning the five sailors evenly divide what is left and again find that there is one
coconut left over for the monkey. What is the minimum number of coconuts that the sailors could have
picked on the previous day?

4. The Tower of Hanoil.
f(1)=1, f(x+1)=2fE)xl .....

5. Find the total number of rectangles in an m x n rectangle. (Finite differences in 2D).

6. Pick’s Theorem. Find a formula for the area of a polygon whose vertices are lattice points by
counting the number of lattice points in its interior and the number of lattice points on its boundary.

11



7. The Battle of Trafalgar — Lord Nelson’s Problem.

Navy 1 (hit percentage =p) Navy 2 (hit percentage =q)
f(0)=L g(0)=S
L-gS S-pL
Etc.
f(x+1)= f(x)-qg(x) g(x+1)=g(x)- pf(x)
Af (x) = —qg(x) Ag(x) = -pf(x)
A f(x) = —qAg(x) A’g(x) =—pAf(x)
. N f(x)=—g[-pf ()] A g(x) = —pl—-qg(x)]
A f(x)— pgf (x) =0 A g(x)— pgg(x)=0

In both cases A = i\/;c-].
L f(x)=A0+pg) +B(1—-+/pg)" = g(x)
Using f(0)=L,f(1)=L-qS and gO0) =S, g1)=S-pL, weget
L+ pg-qS B L\ pq +4S

Forf(x), A=

2/pq 2Jpg

S\/pq - pL Sypg +pL

Forgx)y, A=———— B=——F——
2pq 2Jpq

If p=qand h(x) = f(x) - gx) then

Ah(x) = Af (x) - Ag(x) = —~qg(x) —[-pf (X)] = pf (¥) — qg(x) = ph(x)

It follows that h(x) = C(1+ p)* =(L-S)1+ p)*.

We want h(x) when g(x) = 0. When p = q, we get

o(x) =S—'2£(1+p)x + S;La—py‘ =0=>(i“_“§) - iti :leog(éii)+log[—ii—i}=xo
Case 1: L=100, S=80, p=.1 = x, =10.95 = h(x,) = 56.8

Case 2: L=1300, S=1200,p=.01 = x, =160.94 = h(x,) = 496

Note: L, S and /(x,)nearly fit the Pythagorean theorem (especially when p<<1).

12



The Geistfeld Transform

Definition:  A(s)=@{a,} =Y. s"a,

Theorems:
(}{0}= 3 s"-0=0
n=1
2 s | A
A" - —Ilﬂ’ll . S —
Q{ } ;s 1-5s"'4 s—-4

o0 o0

(}{(n—l)l”} =Y s"(n-1)A"=D u"(n-1) (Letu=s7"4).

© © ! / 12 2
i (n—l)u"_2=u2 (zun—lj S (L) =uz( 1 ?j: (S ;{) i A
n=1 n=1 1-u (l g u)— (1 —S_]ﬂ,)- (S == 1)2

{(n 1)(n-2 A"} Zs””/i" n-1)(n-2)=u’Y (n-1)(n-2)u"> (Letu=s5"4)

n=1 n=l1

n-1 B, 1 //_ 2u3 g 22}
[Z" )_ (m] T Q—up (=4

3121

(s-4)°

Similarly, Q{(n—l)(n—z)(n—3),1"} e

plAr

(s- /?.)pﬂ

Note: All of the formulas above also apply when A=1 and one doesn’t “see” 4.

In general, (}{(n—l)m /1"} -

G{ca,+cb, Zl" (ca, +c,b,)= c]Zl"a +CZZ/1"b =,G{a,}+c,¢{b,}

n=1 n=1 n=1

Note: In the remaining theorems, G{a,}=A(s).

(n+]) m m
1+] ZS a Z n+l _SZS a _S{ZS a _S al:|_se{ n} a1=SA_a]

n=1 n=1 m=2 m=1
G{a,..} =s¢{a,.}-a,= s(sA-a))—-a,=s"A-sa,—a,

ok e L e (&
Q{a"ﬂ.}—sA Ll T i R



Sample Applications

1. Find an explicit formula for a, if a

n+2

= an+]

+2a, and g =1, a, =5

Gla,.}=6la,.}+26{a,]
s’A—sa,—a,=sA—a, +24
" $?A-s-5=54-1+24
(sz—s-—2)A=s+4
n s+4 I SR
(s+1)(s-2) s-2 s+1

(Partial fractions)
a,=2"+(-1)"

2. Suppose the above problem were changed to a,,, =a,,, +2a,+n° -3n and a =1, a, =5

n+l

¢{a,.} =G la,.} +26{a,} +G{(n-1)(n-2)-2|
3 el

(s—l)3 F=]
2

(s-1) s-1
2

(s—l)3 ]
(5—1)3(s+4)+2—2(s—1)2

(s+1)(s=2)(s-1)’

e 1

4 i ST

SZA—sa, ~Q, =84 ~—a, +24+

s’A-s-5=5A-1+2A4+

S?PA—sA-2A=s+4+

1
2 . 4

A= + + ; -
s—=2 s-1 s+l (5_1) (5_1)‘
Therefore
E 1 n 5 n 1 (n—l)(n—.?.)
=4"=2"+-(1 —(-1) —=(n2)-— =
#2421y -2 () -4
=2"+—3(-—1)”—%nz+n—%



3. Consider the following system of recursion equations
an+l :5an +2bn al :1

bn’+l == 6an = 3bn b] = 3

Using transforms we get
sSA —a,=5A4A+2B

sB—b=—64-3B

It follows that
' (s—5)A-2B=1

64 + (s+3)B=3

After using Cramer’s Rule we get
o SR 3 -2

- 3 ] —+
s°—=25s—-3 s-3 s+1

P -2%-3 -3 s+l

3821 =3 6
+

Eventually
a,=3"+2(-1)"



